Addressing Risk Management Efforts for Cloud Services at the Technische Universität München

EUNIS 2010

Silvia Knittl
knittl@tum.de
Technische Universität München

- Sole technical university in Bavaria
- 3 main locations with local administration
- 13 departments
- 24,400 students
- 437 professors
- 5,178 academic and 2,918 non academic employees [2009]
Agenda

- Cloud Computing
- Risk Management for Cloud Computing
- TUM’s efforts:
 - Policy and Organizational Risks
 - Technical Risks
 - Risks not specific to the Cloud
- Conclusion and Outlook
Cloud Computing: Something as a Service

- Software
 - Software as a Service
- Platform
 - Platform as a Service
- Infrastructure
 - Infrastructure as a Service
 - Organisation
Cloud Computing: Infrastructure as a Service
Storage as a Service
Cloud Computing: Platform as a Service

- PaaS offered by the LRZ:
 - Computing services
 - High Performance Supercomputing
 - Linux clusters
 - Virtual machines, virtual web server
 - Database as a Service
Cloud Computing: Software as a Service
Wiki as a Service
Cloud Computing: Benefits

- Reduced cost
- Near instant scalability, flexibility and provisioning
- More mobility
- Concentration on core competencies
Risk Management

Identify

- cf. ENISA

Assess

- potential severity
- probability of occurrence

Treat

- Avoidance
- Reduction
- Sharing
- Retention
Risk Management: Cloud Computing Risk Assessment
ENISA (European Network and Information Security Agency)

Categories:
1) Policy and Organizational Risks
2) Technical Risks
3) Risks not specified by the cloud
4) Legal Risks
TUM’s approach
1. Policy and Organizational Risks

<table>
<thead>
<tr>
<th>Risk</th>
<th>Strategy</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of Governance</td>
<td>Risk reduction</td>
<td>Definition of inter-organisational IT Service Management processes</td>
</tr>
</tbody>
</table>
TUM’s approach
1. Policy and Organizational Risks

<table>
<thead>
<tr>
<th>Risk</th>
<th>Strategy</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Chain Failure</td>
<td>Risk reduction</td>
<td>IT infrastructure maps</td>
</tr>
</tbody>
</table>

![Diagram showing various IT systems and their components]
TUM’s approach
1. Policy and Organizational Risks

<table>
<thead>
<tr>
<th>Risk</th>
<th>Strategy</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Chain Failure</td>
<td>Risk reduction</td>
<td>IT infrastructure maps</td>
</tr>
</tbody>
</table>

- **TUM’s approach**
- **1. Policy and Organizational Risks**

Risk
- **Supply Chain Failure**

Strategy
- Risk reduction

Implementation
- IT infrastructure maps

EUNIS 2010

Silvia Knittl (knittl@tum.de)

13

Map Symbols
- Location L
- System S
- Responsible Institution I
- Service D

[Ciechanowicz et. al.]
TUM’s approach: 1. Policy and Organizational Risks

<table>
<thead>
<tr>
<th>Risk</th>
<th>Strategy</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock-in</td>
<td>Risk retention</td>
<td>TUM part of LRZ’s governance structure</td>
</tr>
</tbody>
</table>

Diagram

- **Bavarian State Ministry of Sciences, Research and the Arts**
- **Ludwig-Maximilians-Universität München**
- **Bavarian Academy of Sciences and Humanities**
- **Technische Universität München**
- **Other Bavarian Universities**
- **Committee for Informatics**
- **Board of Directors of the Leibniz Supercomputing Centre**
 - Prof. Bode (Chairman), Prof. Bungartz, Prof. Hegering, Prof. Kranzlmüller
- **Leibniz Supercomputing Centre**
TUM’s approach: 2. Technical Risks

<table>
<thead>
<tr>
<th>Risk</th>
<th>Strategy</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource exhaustion</td>
<td>Risk sharing</td>
<td>Shared responsibilities</td>
</tr>
<tr>
<td>Intercepting data in transit</td>
<td>Risk reduction</td>
<td>Secured transaction channels</td>
</tr>
<tr>
<td>Isolation failures</td>
<td>Risk retention</td>
<td>-</td>
</tr>
</tbody>
</table>
TUM’s approach:
3. Risks not specified by the cloud

<table>
<thead>
<tr>
<th>Risk</th>
<th>Strategy</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network outages</td>
<td>Risk retention</td>
<td>No own implementation – Trust in Provider</td>
</tr>
<tr>
<td>Theft of computer equipment</td>
<td>Risk reduction</td>
<td>Access restriction at data centre</td>
</tr>
</tbody>
</table>

EUNIS 2010
Silvia Knittl (knittl@tum.de)
CONCLUSION and OUTLOOK

- Cloud Services: IaaS, PaaS, SaaS
 - Benefits: cost savings, flexibility, ..
 - Risks: Policy and Organizational Risks, Technical Risks, Risks not specific to the Cloud, Legal Risks
 - Tool: ENISA Risk management catalogue

- University specific Cloud Services:
 - Campus Management as a Service?
 - Lab as a Service

Silvia Knittl (knittl@tum.de)
OUTLOOK: Lab as a Service

- Lab before:
 - Frequent changes in set-up necessary
 - Resource shortages

- Lab after
 - Whole set-up virtualized
 - No resource shortages any more

[Lindinger et. al.]
REFERENCES

Thank you for your attention!

Questions
BACKUP
Cloud Computing: Software as a Service
Exchange as a Service