Replace or Integrate?
 Decision Support for Building a Federated Configuration Management Database

Authors: Michael Brenner, Markus Gillmeister, Silvia Knittl, Christian Richter

Leibniz Supercomputing Centre (LRZ)

$>$ Owned by the Bavarian Academy of Sciences and Humanities, organisational attributed to the "committee of informatics"
> Staff: around 175 employees
$>$ Located in Garching (near Munich)

Leibniz Supercomputing Centre (LRZ)

Service portfolio:

> Provider of IT Services for scientific and academic institutions in the Munich area (munich scientific network)

- more than 80,000 students
- more than 26,000 employees
> Regional Computer Centre for all Bavarian Universities
- Backup and Archiving Centre (10 petabyte, more than 6 billion files)
- Competence centre (Networks, HPC, IT Management)
> National supercomputing centre (for all German universities)
- Gauss Centre for Supercomputing
- Integrated in European HPC and Grid projects

Munich Scientific Network (MWN)

> More than 60 locations with over 440 buildings
> 500 km fibre optic cable connecting these buildings
> More than 1,300 active network components connecting over 68,000 systems (servers, workstations, printers, etc.)
> More than 1,200 wireless access points (WLAN)

Motivation: Orientation to IT Service Management

$>$ Diverse vertical range of service provisioning
$>$ Heterogenous service portfolio (continually expanding)
$>$ Increasing criticality of services
$>$ Increasing scope, volume and complexity of services
\rightarrow Demands stricter quality requirements
\rightarrow LRZ is currently introducing IT Service-Management (ITSM) processes according to ISO/IEC 20000 (with a new ITSM tool) Goal is the ISO/IEC20000 certification for the organisation

Short overview of ISO/IEC20000

> Process orientated IT Service-Management
> International standard, possibility for person/organisation certification
$>$ Uses best practices of ITILv2, MOF, Cobit
> Consists of $\mathbf{1 3}$ processes:

Configuration Management / CMDB

$>$ Configuration Management Database (CMDB) is the central information store/provider for all ITSM-processes

- Logical model of infrastructure
- Store information about Configuration Items (CI) + relations between
$>$ Designing and establishment of a CMDB is one of the most challenging undertakings
- Which information is needed?
- Which information can be maintained?
- Where are these information stored now?
- How can these information be integrated in the CMDB of the selected ITSM tool?

Problem building a CMDB

> Initiating a CMDB is never a „greenfield project", local data repository's (MDR) exist already in every company

At the LRZ exist around 90 different information systems

- Enterprise applications
- Wikis
- Monitoring tools
- Documents
- Excel sheet's

- Home grown applications

Building a federated CMDB

$>$ Not all MDRs make sense
$>$ Good time to sort some less useful data repository's out
$>$ Single monolithic CMDB is not applicable in larger infrastructures
\rightarrow But which MDR is really obsolete and how can you constitute the claim?
\rightarrow Replace or integrate?
Replace: MDR data must be imported in the CMDB before switching off Integrate: MDR data is kept synchronized with the CMDB

Setting up a decision matrix for MDRs

$>$ Evaluation catalog

Section	
Common Criteria	- Usage Scope
	- Supplier Support
	- Importance within organisation
	- Complexity of maintenance
Functionality	- Additional functionality
Technology and interface	- Database as storage
	- Export interface
	- Import interface
	- Automatic identification of CI possible
	- Connection to other systems

Decision matrix for MDRs

$>$ Evaluation catalog
Section
Common Criteria
Functionality
Technology and interface
$>$ Weighted rating matrix

Rating	Weight
No significance	0
Minor importance	1
Important	2
Very important	4

\rightarrow Results in a single integration score
< 50\%: replace
> 50\%: integrate
(between 40-60\% futher investigation suggestive)

Decision matrix for MDRs at the LRZ

Excerpt of matrix:

Integration/Migration Scoreboard	LRZ Switch Documentation Tool	VMware infrastructure 3.5 Enterprise
Common Criteria (25\%)		
Usage scope	Communications Department	LRZ wide
Supplier support	Existent	Existent
Importance within organization	Medium	High
Complexity of maintenance	Low	High
Functionality (25\%)		
Additional functionality	No	Yes - controlling of VMware
Technology and Interfaces (50\%)		
Database as storage	No	Yes
..		
Export interface	n.a.	Yes - SOAP
Automatic identification of Cl possible	No	Yes
Connected to other systems	No	Yes - Active Directory
Result		
Integration Score (\%)	20	100
Referral	Replacement	Integration

Designing the federated CMDB (information model)

$>$ Design process after identifying all relevant MDRs
> Elicitation workshops with concerned stakeholders
> Top-down approach for CMDB-Design:

- general master data
- Elements for core services
- Informations for selected ITSM-procedures
- Refining on demand...

Designing the federated CMDB (data model)
$>$ Transform the information model into a data model
> Depends on selected CMDB-Tool LRZ uses iET ITSM from iET Solutions ${ }^{\circledR}$ and is now implementing the CMDB-Structure

Conclusion \& Outlook

> Monolithic CMDB is not feasible, trend is federated CMDB
$>$ Developed a decision matrix for assessment of MDRs (Replace or integrate)
> CMDB design technique for information model: Top-Down Approach
> Transformation information model into data model
> Implement our concept into our ITSM-Tool (iET ITSM)
$>$ Connect major MDRs to the CMDB of the ITSM-Tool

THANKS FOR YOUR ATTENTION

Markus Gillmeister
markus.gillmeister@Irz.de

