A process oriented approach towards open university management software

Uwe Hübner¹

1HIS Hochschul-Informations-System GmbH Hannover, huebner@his.de

Keywords

Integrated university management, process design, internationalization

INTRODUCTION

The Hochschul-Informations-System GmbH (HIS) is a nonprofit support organization for universities and other institutions of higher education. Our primary target audience are universities in Germany, but international activities are increasing.

HIS is developing and introducing a new software generation for university management under the label "HISinOne". There are similar activities in several European countries.

In this contribution we will outline methods and tools to facilitate cooperations between these developments at various levels from process design to running code.

Is SOA the answer? What is the problem?

Many approaches (including HISinOne) aim at an integrated system with a fairly homogeneous design. They bring their own infrastructure in terms of technology, database and web services. Typically there are dedicated mechanisms for customization and maintenance (how do we handle upgrades? ...). This makes it difficult to exchange parts or pick “interesting” components or ideas from other projects.

In theory any service oriented architecture (SOA) should facilitate combination and linkage of system components from different origin. This will probably not always be cheap and easy, but doable. One or more layers with the respective services from potentially different projects are combined (Figure 1).

[image: image1.png]Campus Management

Application Stuent
Agmission Administration

Studly Planning, Examinations

Aumni

Research Management

Technology Transfer

Resource Management
Financial Accounting
Management th

Hurman Resources

Operating

core

Business
Intelligence

Personalizedt
Services and
Directories

Inra -
structure

 Figure 1: Service Layer Options

For this first approach we only differentiate the user interfaces (UI), service components (S) and persistence/data base (P). A simple case without any “foreign” components is shown as option A. Option B shows an additional service “above” our service, possibly implementing an alternative user interface. In option C the services of a “foreign” component are used, this component brings its own persistence (aka data base). Combinations of B and C are not unusual.

Selection of a process description tool

Before we combine services to a useful system we have to make sure that the business processes are well understood, and we have to find their counterparts in the software.

The "business" of a university is different from that of a manufacturer of material goods. This starts with the identification of “products”. One can argue that the product should be “knowledge for the society”. For our purposes we assume that graduates are a main product.

A closer look reveals a special "domain language". Domain processes are used to describe the student life cycle. As a picture is worth a thousand words, a graphical representation of processes is sensible.

The “world” of process design languages and tools is diversified. Some of the more common options are

· BPMN – Business Process Modeling Notation 2.0

· UML – Unified Modeling Language 2.0

Manufacturer-specific methodologies and tools (like ARIS) are sometimes positioned as additional alternatives, but currently these proprietary tools are integrating the standard notations too. The expressiveness of the various notations is very similar, if used properly. This is illustrated for example in [1]; note however, that our methodology is a bit different than that described there.

After some evaluations, debates and collection of experiences we selected UML for process design. This was motivated by the sustainability, availability of good free tools and usability for other design levels as well. Occasionally we hear the argument, that UML is only understandable by computer professionals and not by the domain experts (or managers for that matter). We can avoid this trap by a proper selection of the notations (we do not “throw” all 14 diagram types at the unsuspecting staff member) and a careful choice of an appropriate detail level. Some UML diagram types (like class hierarchies) are reserved for developers.

A (simplified) example should illustrate our approach. Processes can be expressed as activity diagrams in UML (Figure 2). In this case we have a simple “string” of consecutive action nodes. The small fork in the action nodes expresses a possibility to “zoom” into this node to see a more detailed description level (“call behavior” in UML speak). The important aspect of a changing role is expressed in “notes” here.

 [image: image2.png]

Figure 2: Activity diagram example

What are some lessons learned? It is important to take the opportunity to explain and discuss the processes with all involved stakeholders. Sometimes we find existing process documentation done with alternative process description methods or have to deliver other formats. This is easier by following some common guidelines, for example the flow of activity is generally from left to right to facilitate easy comparison, horizontal “swim lanes” are used to illustrate actions by different participants of the process. Our current tool selection for UML is “astah” (formerly “Jude”) [2], the professional version is advisable for certain diagram management tasks; otherwise the community version is sufficient.

Getting process designs "internationalized”

The diagrams from the last chapter are not too useful for those trying to make sense of it in a non-German speaking country. Real systems have thousands of nodes and labels, so a manual translation is not very attractive. This is compounded by a significant amount of changes over time; each change may cause a correction to all “translated” diagrams.

Our current new software systems already have arrangements to provide user interfaces and database content in multiple languages (internationalization and localization). It would be nice to have something similar for the process designs and other high level documentation. This would be an important first step to bridge the gap between solutions in different countries (and possibly different "higher education cultures").

UML tools typically support export and import of the open representation XMI, which stands for XML Metadata Interchange [3]. We should note that the XMI standard has found some well earned criticism, because the results of exporting XMI from one tool and importing into another are often less than optimal. For our purpose this external representation of process designs is “good enough”.

Next we need a multi language glossary. This is currently implemented as a wiki article for easy maintenance. Other more sophisticated concepts like GNU gettext with “portable objects” are possible alternatives here [4].

With these components process representations can be translated with proper tool support (Figure 3).

[image: image3.png]B

fionakIs-Kostenerror kg (FIK)

E—< Fo—Fl -

input (t_pec) Swich / Casd Gevichtung error kg (Gew) =

/(mm (tpec)
- —

SR~ ——{f——{¥
A R ey NS i
Sy BTy ? e e

Lo e
o ot zorm e o P B

errorogging (PNK)

 Figure 3: Internationalization support for process designs

Those terms without a match in the glossary will be kept in the original language. These would be candidates for inclusion in the glossary. Longer explanation texts are not handled well; these are largely avoided by including references to other documentation where appropriate.

This internationalization is not tied to a specific tool or even UML and should be usable with any XML representation (but of course different tools and representations are always a source of additional complications).

Handling other documentation

The process flows are important, but often there are textual documents necessary as well. These typically include business concepts (“synopsis”) and collections of business rules.

How do we handle these textual documentations? A first try with automatic translation services was not very encouraging; many important concepts were no longer understandable in the translation. If we do manual translation, we have to find a way to handle changes. If the “original” is changed, there should be a well defined process for maintaining the correct translation. Currently the original documentation consists of linked wiki articles. The translations are wiki articles too with a fixed naming convention to associate these with the “original”. Most wiki engines (we use mediawiki) have functionality for time stamping of changes and version comparison. This helps to identify those translations needing an “update”. The process is currently manual at fixed times, but automation seems possible.

Getting the pieces together

Now we should have a better mutual understanding of "what the university and the software do". In the next step we will evaluate the potentials to combine parts from different origin.

The findings presented here come from our own practice in introducing the "new" HIS system. In many cases it is not practical or not intended to change everything at the same time ("big bang"). A stepwise approach is often regarded as the more sensible option.

Therefore it is important to identify process chains with clean and "slim" interfaces to the surroundings. One such example is application/admission with a "turning point" when the applicant becomes a real student (which may be handled in the same or another administration system).

Preferably the process and information flow should have exactly one direction. A counterexample would be if a student can apply for participation in a course either in the study planning system or in an supporting e learning application (with the hope that this is automatically consolidated). Such “process designs” are complex and error prone.

Depending on the actual procedures and performance characteristics we use a range of interworking options:

· Web services

· ETL

· Dedicated exports/imports

A second dimension is the frequency and the initiating event. Often a process event in the source process triggers the transfer. The most simple case is an event caused by the user interface (the user finishing an interaction). Special attention is needed here to preserve the responsiveness of the user interface; potentially time consuming operations are better scheduled in the background.

The other case are transfers triggered periodically at fixed times or time intervals. This is certainly needed for deadlines set by the administration. For more time consuming operations (those involving all students, all applicants …) this may also be the most sensible solution.

An additional thought should be given to robustness and repeatability of transfers. An event based interface - which transfers only changes - looks attractive in terms of data volume. But if we “miss” an event for whatever reason the consistency is in danger. On the other hand if we transfer the same persons multiple times we do not want to end with multiplying persons. This latter problem is solved by establishing a common identity for all objects, then if the same object is “seen” by a system the second time only the attributes of the object are updated.

Web services

The first alternative uses the well established SAOP protocols. Our implementation is based on the Apache Axis 2 library.

For each process coupling we have to decide, which part is the web service provider and which one is the consumer. Web service provider interfaces typically expose the same services as the user interface. That way the full business logic is available to web service clients (Figure 4).

 Figure 4: HISinOne service architecture

[image: image4.png]Zu\zssunﬂ

>Q

\meressemlﬁ

[Bewerber 5

[Student 5

For services with a high volume of parameters we have to account for the overhead caused by the XML serialization/deserialization and SAOP protocol handling. We observed a factor >100 in terms of memory footprint and elapsed time compared to an equivalent local method call.

In a number of cases the REST paradigm (Representational State Transfer) with a resource oriented interface, typically without the SOAP layer, is more appropriate.

ETL - Extract, Transform, Load

In the world of data warehouses and business intelligence solutions a similar interworking challenge is well known. An operational database is often highly optimized for fast and consistent transactions with no redundancy and good normalization. For analysis and reporting this may not be the most favorable structure. We would rather have a denormalized data base with time series of historical data.

A solution to this problem is a separate database for the data warehouse and a process for transferring the “interesting” data to a data warehouse. In this process appropriate transformations like denormalization or anonymization are included.

There are a number of commercial and open source solutions supporting this paradigm of “extract – transform – load” (ETL). We selected the open source tool “Pentaho Data Integration” [5] (PDI, formerly known as “kettle”). The ETL process is designed with a graphical user interface, which also serves as a nice documentation, for an example see figure 5. Source and destination of data objects can be data bases, but other representations (XML, CSV, xls …) are supported as well.

Many otherwise rather complicated operations have very simple expressions, for example "insert or update rows in a database based upon keys" in an output data base.

[image: image5.png]Selbstregistrierung m

\meressemlﬁ [Bewerber B‘ fstudent H

UML-Activity - XMI

Glossary |= Translation Substitution

'

UML-Activity - XMI

Self Registration

Frosec N [Remean ™ Frugen &

 Figure 5: Example of an ETL design with PDI

Dedicated exports/imports

This category caters for interfaces to legacy systems, which should be kept stable and which may need a certain amount of manual monitoring. An example is the transfer of a list of examination results from a software based examination system to the grade registration part of student examination management. Here the equivalent of personally signing a list of grades by a faculty member is often required.

Student administration and human resources can fill and update an external identity management system or simply an LDAP server.

The “big picture”

The high level functional architecture of HISinOne should illustrate the findings from the previous chapters (Figure 6). The integrated university management system currently consists of four segments. Each segment contains a number of high level processes (which we also call “product areas”). The “borders” of these product areas are prime candidates for potential linking points to alternative components. At this level we cannot express “all” process and data flows, as this would render the diagram incomprehensible.

At the next level there are more detailed descriptions of the data objects “traveling” between the components. We are still evaluating a number of representations for a database independent description of these aspects.

[image: image6.png]HISinOne

Web presentation

3rd Party

Persistence

 Figure 6: Functional architecture of HISinOne

Business models for cooperations

One of the prime properties of our service for the universities is sustainability of the developments. It is a myth that open source software is created or supported only by enthusiastic volunteers in their spare time. Even as a non-profit organization we need a solid business model to support future developments and continued service, which both call for a certain capacity of qualified developers, QA, customizing and support engineers.

Some of the newer HIS developments are licensed as open source in the strict sense, the rest is distributed (including source) via contracts which should ensure a fair participation in further developments. This is usually done in the form of a support contract, which determines a minimum work volume depending on the size (number of students) of the institutions using the software. Shared developments have the additional option of reciprocity.

Conclusion

Useful cooperations require more than sharing code, they require sharing the understanding of the involved processes. We hope that the suggestions and methods shown here will improve cooperation potentials and initiate more activities towards open university management solutions in Europe.

Literature

[1] Martin Schedlbauer: The Art of Business Process Modeling.

 Xlibris Corp (22. Januar 2010), ISBN-10: 1450541666

[2] http://astah.change-vision.com

[3] MOF 2.0 / XMI Mapping Specification, v2.1.1

 Object Management Group (OMG),

 http://www.omg.org/technology/documents/formal/xmi.htm 04/27/2009

[4] GNU gettext

 http://www.gnu.org/software/gettext/ 2010/01/31

[5] Kettle Pentaho Data Integration

 http://kettle.pentaho.org/

EUNIS-2010-paper-template.doc

